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Question:

How to generate molecules with 
desired properties?
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Challenges:

Huge design space that is 
discrete and high-dimensional



Generative Design

• How to generate new (molecules, materials, …) from an extremely high-
dimensional (and discrete) space?

• Generative design loop
• Collect a library of existing designs
• Train a ML model to generate more designs “like them”

• New molecules, material structures, etc.
• (may or may not be better than library designs, but different)

• Screen each generated design to see if it is better
• Adjust the generator to preferentially suggest higher-quality designs



Training a Generator

• Mathematically each design has a representation (e.g., encoding of a 
molecular structure)

• The design library becomes a set of points in this representation space
• A generative AI model learns to sample this distribution



effectively searching large areas of chemical space because it is
not possible to guide the search with gradients.
A molecular representation method that is continuous, data-

driven, and can easily be converted into a machine-readable
molecule has several advantages. First, hand-specified mutation
rules are unnecessary, as new compounds can be generated
automatically by modifying the vector representation and then
decoding. Second, if we develop a differentiable model that
maps from molecular representations to desirable properties,
we can enable the use of gradient-based optimization to make
larger jumps in chemical space. Gradient-based optimization
can be combined with Bayesian inference methods to select
compounds that are likely to be informative about the global
optimum. Third, a data-driven representation can leverage large
sets of unlabeled chemical compounds to automatically build an
even larger implicit library, and then use the smaller set of
labeled examples to build a regression model from the
continuous representation to the desired properties. This lets
us take advantage of large chemical databases containing
millions of molecules, even when many properties are unknown
for most compounds.
Recent advances in machine learning have resulted in

powerful probabilistic generative models that, after being
trained on real examples, are able to produce realistic synthetic
samples. Such models usually also produce low-dimensional
continuous representations of the data being modeled, allowing
interpolation or analogical reasoning for natural images,19

text,20 speech, and music.21,22 We apply such generative models
to chemical design, using a pair of deep networks trained as an
autoencoder to convert molecules represented as SMILES
strings into a continuous vector representation. In principle,
this method of converting from a molecular representation to a
continuous vector representation could be applied to any
molecular representation, including chemical fingerprints,23

convolutional neural networks on graphs,24 similar graph-
convolutions,25 and Coulomb matrices.26 We chose to use
SMILES representation because this representation can be
readily converted into a molecule.
Using this new continuous vector-valued representation, we

experiment with the use of continuous optimization to produce
novel compounds. We trained the autoencoder jointly on a
property prediction task: we added a multilayer perceptron that
predicts property values from the continuous representation
generated by the encoder, and included the regression error in
our loss function. We then examined the effects that joint
training had on the latent space, and tested optimization in this
latent space for new molecules that optimize our desired
properties.

Representation and Autoencoder Framework. The
autoencoder in comprised of two deep networks: an encoder
network to convert each string into a fixed-dimensional vector,
and a decoder network to convert vectors back into strings
(Figure 1a). The autoencoder is trained to minimize error in
reproducing the original string; i.e., it attempts to learn the
identity function. Key to the design of the autoencoder is the
mapping of strings through an information bottleneck. This
bottleneckhere the fixed-length continuous vectorinduces
the network to learn a compressed representation that captures
the most statistically salient information in the data. We call the
vector-encoded molecule the latent representation of the
molecule.
For unconstrained optimization in the latent space to work,

points in the latent space must decode into valid SMILES
strings that capture the chemical nature of the training data.
Without this constraint, the latent space learned by the
autoencoder may be sparse and may contain large “dead areas”,
which decode to invalid SMILES strings. To help ensure that
points in the latent space correspond to valid realistic

Figure 1. (a) A diagram of the autoencoder used for molecular design, including the joint property prediction model. Starting from a discrete
molecular representation, such as a SMILES string, the encoder network converts each molecule into a vector in the latent space, which is effectively
a continuous molecular representation. Given a point in the latent space, the decoder network produces a corresponding SMILES string. A mutilayer
perceptron network estimates the value of target properties associated with each molecule. (b) Gradient-based optimization in continuous latent
space. After training a surrogate model f(z) to predict the properties of molecules based on their latent representation z, we can optimize f(z) with
respect to z to find new latent representations expected to have high values of desired properties. These new latent representations can then be
decoded into SMILES strings, at which point their properties can be tested empirically.
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Generative Molecular Design (GMD) 
Using A Variational Autoencoder (VAE) 



Generative AI has been having huge impact on small molecule design

Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of 
molecules." ACS central science 4.2 (2018): 268-276.
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A note on the ATOM GMD loop

• The VAE works by mapping the high-dimensional representation of a 
molecule into a low-dimensional latent space

• However, ATOM pipeline doesn’t actually use VAE generatively to sample 
new molecules

• It only uses the latent space
• To generate new molecules, it uses a genetic algorithm to propose and 

improve candidate designs within the latent space
• VAE is used as dimension reduction of design space for GA

• However, versions of GMD where the generative AI samples new 
molecules also exist



Structure preservation: Junction Tree Variational Autoencoder

Naïve generative models can propose candidates that decode to 
invalid molecules

Structure-by-structure graph generation approach is preferred as it 
avoids invalid intermediate states (marked in red) encountered in 
node-by-node approach (exploits graph structure of molecules)

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Junction tree variational autoencoder for molecular graph 
generation." International conference on machine learning. PMLR, 2018.



Some Practical Questions

1. How can we extend the capability of a generative model for 
suggesting novel molecules with enhanced properties that go 
beyond the initial training data?

2. Considering that the initial training dataset is typically huge, how 
can we augment the dataset such that it can effectively steer the 
model towards molecules with more desirable properties?

3. How can we improve “data-driven” generative models by taking 
advantage of other mechanistic models (e.g., pathway models)

4. How to incorporate uncertainty quantification for large ML models 
with huge parameter spaces, and use that to guide exploration?



Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient 
optimization in the latent space of deep generative models via weighted retraining, 2020.
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Figure 1: Schematic illustrating LSO with and without weighted retraining. The cartoon illustrates
the input/latent space of the generative model (top). The latent manifold from Section 6.2’s 2D shape
area maximization task is shown for comparison (bottom). Each image in the manifold shows the
result of decoding a latent point on a uniform square grid in a 2D latent space; images are centered
on the original grid points. Red/green regions correspond to points with low/high objective function
values respectively. The yellow star is the global optimum in X . Coloured circles are data points;
their radius represents their weight. The dashed line surrounds the region of X modelled by g (i.e.
g(Z), the image of Z). (a) The status of the generative model g at the start of optimization. (b) The
result of standard LSO with g fixed, which queries the points in orange. It is only able to find points
close to the training data used to learn Z , resulting in slow and incomplete exploration of X . (c) The
result midway (left) and at the end (right) of LSO with our proposed approach, which weights data
points according to their objective function value and retrains g to incorporate newly queried data.
This continually adjusts Z to focus on modelling the most promising regions of X , speeding up the
optimization and allowing for substantial extrapolation beyond the initial training data.

than one trained specifically for the explicit purpose of downstream optimization. Put differently, the
training of the generative model is effectively decoupled from the optimization task.

In this work, we identify and examine two types of decoupling in LSO. We argue that they make
optimization unnecessarily difficult and fundamentally prevent LSO from finding solutions that lie far
from the training data. Motivated by this, we propose weighting of the data distribution and periodic
retraining of the generative model to effectively resolve this decoupling. We argue that these two
modifications are highly complementary, fundamentally transforming LSO from a local optimizer
into an efficient global optimizer capable of recursive self-improvement. Our contributions are:

1. We identify and describe two critical failure modes of previous LSO-based methods which
severely limit their efficiency and performance, and thus practical applicability (Section 3).

2. We propose to combine dataset weighting with periodic retraining of the generative model
used within LSO as an effective way to directly address the issued identified (Section 4).

3. We empirically demonstrate that weighted retraining significantly benefits LSO across a
variety of application domains and generative models, achieving substantial improvements
over state-of-the-art methods on a widely-used chemical design benchmark (Section 6).

2 Problem Statement and Background

Sample-Efficient Black Box Optimization. Let X be an input space, and let f : X 7! R be an
objective function. In particular, we focus on cases where 1) the input space X is high-dimensional

2

LSO with weighted retraining

As we learn more about which candidates are good, iteratively retrain the 
generator to preferentially suggest good candidates.



• Molecules designed based on the optimized GMD was able to compete 
molecules generated by QSAR (Quantitative structure-activity relationship) for 
binding and various properties

• In this case, although GMD-generated molecules are not structurally aware of 
the target, they score better than co-crystalized ligand and long duration MD 
shows very stable binding

Examples | DRD2 inhibitors



Enabling Effective UQ & OED
How can we enable effective UQ and OED / active learning for 

deep neural networks?



Summary

1. GMD enables efficient search for novel molecules with 
desired properties

2. Various ML models have been proposed, where VAE-type of 
models have been especially popular

3. Diverse techniques have been introduced to fine-tune / 
optimize generative models for specific downstream tasks

4. Further research is needed for effective (Bayesian) UQ and 
OED techniques for such generative models


